
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

A Denotational Approach to Release/Acquire Concurrency

YOTAM DVIR∗, Tel Aviv University, Israel
OHAD KAMMAR, University of Edinburgh, Scotland
ORI LAHAV, Tel Aviv University, Israel

Denotational semantics defines the meaning of programs compositionally, where the meaning of a
program fragment is a function of the meanings assigned to its immediate syntactic constituents.
This makes denotational semantics instrumental for understanding the meaning a piece of code
in a way that is independent of the context under which the code will run. This style of semantics
contrasts with standard operational semantics, which only executes closed/whole programs. A ba-
sic requirement of such a denotation function ⟦−⟧ is for it to be adequate w.r.t. a given operational
semantics: plugging program fragments 𝑀 and 𝑁 with equal denotations—i.e. ⟦𝑀⟧ = ⟦𝑁 ⟧—into
some program context Ξ [−] that closes over their variables, results in observationally indistin-
guishable closed programs in the given operational semantics. Moreover, assuming that denota-
tions have a defined order (≤), a “directed” version of adequacy ensures that ⟦𝑀⟧ ≤ ⟦𝑁 ⟧ implies
that all behaviors exhibited by Ξ [𝑀] under the operational semantics are also exhibited by Ξ [𝑁 ].
For shared-memory concurrent programming, the seminal work of Brookes [1996] defined a

denotational semantics, where the denotation ⟦𝑀⟧ is a set of totally ordered traces that consist of
sequences of pairs of memory snapshots ⟨𝜇0, 𝜚0⟩ ... ⟨𝜇𝑛, 𝜚𝑛⟩. Each sequence represents a behavior
that the program fragment 𝑀 may exhibit. In every pair ⟨𝜇, 𝜚⟩ in a trace, 𝜇 is the snapshot that
𝑀 relies on the environment to provide; and 𝜚 is the snapshot that𝑀 guarantees to provide in re-
turn. The gaps between pairs represent possible interference by the environment. Working under
the assumption of preemptive scheduling—imposing no restrictions on the interleaving of steps of
execution between parallel threads—denotations are closed under the following two trace-rewrit-
ing operations which maintain the representation of possible behavior. Stutter adds a transition
of the form ⟨𝜇, 𝜇⟩ anywhere in the trace; a program fragment can always guarantee no changes
between its actions. Mumble combines a couple of subsequent transitions of the form ⟨𝜇, 𝜚⟩ ⟨𝜚, 𝜃⟩
into a single transition ⟨𝜇, 𝜃⟩ anywhere in the trace; a program fragment can always rely on its
own guarantees in the absence of observable interference from the environment.

A memory model describes how memory access by concurrently running threads is handled
through a program’s routine. Brookes established the adequacy of the trace-based denotational se-
mantics w.r.t. the strongest operational semantics of shared-memory concurrent programs, known
as sequential consistency (SC), where every memory access happens instantaneously and immedi-
ately affects all concurrent threads. Jagadeesan et al. [2012] closely followed Brookes to define
denotational semantics for x86-TSO [25, 27]. Other weak memory models, in particular, mod-
els of programming languages, and non-multi-copy-atomic models, where writes can be observed
by different threads in different orders, have so far been out of reach of Brookes’s totally or-
dered traces, and were only captured by much more sophisticated models based on partial or-
ders [10, 12, 16, 18, 20, 26]. Progressing in this direction, we target the Release/Acquire (RA) mem-
ory model. This model, obtained by restricting the C/C++11 memory model [2] to release/acquire
atomics, is a well-studied fundamental memory model weaker than x86-TSO, which, roughly
speaking, ensures “causal consistency” together with “per-location-SC” and “RMW (read-modify-
∗Graduate student author (the other authors are his advisors)

Authors’ addresses: Yotam Dvir, yotamdvir@mail.tau.ac.il, Tel Aviv University, Israel; Ohad Kammar, ohad.kammar@ed.
ac.uk, University of Edinburgh, Scotland; Ori Lahav, orilahav@tau.ac.il, Tel Aviv University, Israel.

HTTPS://ORCID.ORG/0000-0002-6507-3791
HTTPS://ORCID.ORG/0000-0002-2071-0929
HTTPS://ORCID.ORG/0000-0003-4305-6998
https://orcid.org/0000-0002-6507-3791
https://orcid.org/0000-0002-2071-0929
https://orcid.org/0000-0003-4305-6998


50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

2 Yotam Dvir, Ohad Kammar, and Ori Lahav

write) atomicity” [21, 22]. These guarantees make RA sufficiently strong for implementing com-
mon synchronization idioms.

Our first contribution is a Brookes-style denotational semantics for RA. As Brookes’s traces
are totally ordered, this result may seem counterintuitive. The standard semantics for RA is a
declarative (a.k.a. axiomatic) memory model, in the form of acyclicity consistency constraints over
partially ordered candidate execution graphs. Since these graphs are not totally ordered, one might
expect that Brookes’s traces are insufficient. Nevertheless, we observe that Kang et al.’s “view-
based” machine [2017], an interleaving operational semantics that is equivalent to RA’s declarative
formulation lends itself to Brookes-style semantics by developing a compatible notion of traces.
In RA’s operational semantics, the memory associates a timeline to each location. A thread

writes by sending an immutable message, placing it on the appropriate timeline. The message oc-
cupies a segment of the timeline that must not intersect already-occupied segments, which means
that timeline totally orders the messages. A thread can spontaneously receive a message from
memory if a certain to-be-described causal consistency condition is met. Execution starts with a
single initial message on each timeline, which threads consider as already received.

Each threadmaintains a view that points to its most recentmessage at each location: the one that
appears latest on the location’s timeline of all the messages that the thread has received. A thread
reads by loading the value from its most recent message. When a thread writes, it must place
the message somewhere after its most recent message on the timeline, though possibly before
messages it has not yet received. A message from an RMW’s write must be placed adjacently to
the read message.This blocks another RMW from doing the same, thus enforcing atomicity. A sent
message is considered to be received, and thus it become the thread’s most recent message.

Each message records the view of the thread that wrote it, except for initial messages who’s
view points to the initial messages. We think of messages as pointing to other messages according
to this view. A thread can receive any message so long as it has already received all the other
messages to which the message points. This mechanism maintains causal consistency: a thread
cannot receive a message without receiving the messages that contributed to its creation.
In Kang et al.’s language, as is common in the literature on memory models, parallel compo-

sition (∥) appears only at the top level. We extend this language by allowing (∥) to appear in
nested positions, making it a first-class program construct. This allows us to decompose the jus-
tification of Write-Read Reordering (WR-Reord) (l ∶= 𝑣) ; m?↠ letx = m? in (l ∶= 𝑣) ; x, a crucial
reordering of memory accesses validated by RA but not by SC, using several valid transformations
that are justified by independent arguments. The main ones are Write-Read Deorder (WR-Deord)
⟨(l ∶= 𝑣) , m?⟩ ↠ (l ∶= 𝑣) ∥ m? and sequencing 𝑀 ∥ 𝑁 ↠ ⟨𝑀,𝑁 ⟩. The latter is an example of a
law of parallel programming [14]. With first-class parallelism we can validate the rest too, such
as generalized sequencing (𝑀1 ;𝑀2) ∥ (𝑁1 ; 𝑁2)↠ (𝑀1 ∥ 𝑁1) ; (𝑀2 ∥ 𝑁2). These transformations
can occur anywhere in the program, so reasoning in this way requires allowing nested parallelism.

We support first-class parallelism by organizing thread views in an evolving “view-tree”, rather
than in a fixed flat mapping. When sub-threads are activated, they inherit the view of the parent
thread, replacing the corresponding leaf with a node with two child leaves carrying the same view;
and when the threads synchronize, the parent thread inherits their views, combining two sibling
leaves into a leaf that replaces their parent.

Below we illustrate an example trace, in the setting of two memory locations l and m. The mem-
ory snapshots are illustrated using two diagrams. Top: shows the messages per location as (possi-
bly adjacent) segments on the location’s timeline. Bottom: shows the graph structure induced by
the views within messages. The only local message—added within a transition—is 𝜈2: one that the



99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

A Denotational Approach to Release/Acquire Concurrency 3

program fragment guarantees to provide, rather than relies on receiving. Our traces also include
an initial view 𝛼 , and a final view 𝜔 , by which the program fragment respectively relies on, and
guarantees, availability of message. These views are illustrated by showing where they point.

⟨ l: 0
𝜈1

m: 1
𝜖1 5

𝜖3

𝛼 𝜈1 𝜖3

𝜖1

l

m m

l

l ,

l: 0
𝜈1

m: 1
𝜖1 5

𝜖3

𝜈1 𝜖3

𝜖1

m

l

l

⟩⟨ l: 0
𝜈1 4

𝜈3

m: 1
𝜖1 3

𝜖2 5
𝜖3

𝜈1 𝜖3

𝜖1 𝜈3 𝜖2

m

l

l
m l ,

l: 0
𝜈1 2

𝜈2 4
𝜈3

m: 1
𝜖1 3

𝜖2 5
𝜖3

𝜈1 𝜖3 𝜈2 𝜔

𝜖1 𝜈3 𝜖2

m

l m l

ml
m l

⟩

Weprove several results about our semantics. Soundness: for every interrupted execution there
is a corresponding single-transition trace in the denotation. Fundamental Lemma: for every
trace in the denotation there exists an interrupted execution of the program fragment exhibiting
a related behavior. Adequacy: denotational approximation implies contextual refinement. An im-
mediate practical application of adequacy is the ability to provide local formal justifications of pro-
gram transformations, such as performed by optimizing compilers. Formally justifying these trans-
formations without the local analysis that denotational semantics provides is non-trivial [12, 28].

An important aspect of denotational semantics is its abstraction. As an external measure, we
verify that our adequate semantics validates various transformations/optimizations: standard and
structural transformations; algebraic laws of parallel programming; and all known thread-local RA-
valid compiler transformations involving atomic RA memory accesses. This level of abstraction is
achieved thanks to our denotations being closed not only under analogs to Brookes’s stutter and
mumble, but also several RA-specific operations. This design allows us to relate programs which
would naively correspond to rather different sets of traces. For example, we have theAbsorb closure
rule, which combines two adjacent local messages added within the same transition. Below we
sketch how it modifies memory snapshots between the precedent and antecedent traces:

𝑣𝜈 𝑤𝜖 𝜖𝜈 AbsorbÐÐÐ→ 𝑤𝜖′ 𝜖′

Figuratively, the preceding message (𝜈) is “absorbed” by the successor (𝜖 which becomes 𝜖′).
Nothing must point to the preceding message, so as to not leave dangling names. We use this
rule when validating transformations which eliminate a write that is followed by another, such as
Write-Write Elimination (WW-Elim) l ∶= 𝑣 ; l ∶=𝑤 ↠ l ∶=𝑤 .

Our second contribution is to connect the core semantics of parallel programming languages
exhibiting weak behaviors to the more standard semantic account for sequential programming
languages. Brookes presented his semantics for a simple imperative WHILE language, but Benton
et al. [2016], Dvir et al. [2022] later extended it to higher-order languages using Moggi’s monad-
based approach [1991]. A denotational semantics given in this monadic style comes ready-made
with a rich semantic toolkit for program denotation [5], transformations [3, 6–8, 15], reasoning [1,
23], etc. We want to challenge, compare, and reuse this diverse toolkit in the concurrent setting. As
a yardstick to the applicability of the monadic toolkit, we develop our semantics for a higher-order
functional language with a general, first-class parallel composition operator. This is in contrast to
most of the weak memory models research which employs imperative languages and assumes a
single top-level parallel composition, but more in line with game models for concurrency [e.g. 11].
This puts weak memory models, which often require bespoke and highly specialized presentations,
on a similar footing to many other programming effects.



148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

4 Yotam Dvir, Ohad Kammar, and Ori Lahav

REFERENCES
[1] Alejandro Aguirre, Shin-ya Katsumata, and Satoshi Kura. 2022. Weakest preconditions in fibrations. Mathematical

Structures in Computer Science 32, 4 (2022), 472–510. https://doi.org/10.1017/S0960129522000330
[2] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. 2011. Mathematizing C++ concurrency.

In Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2011,
Austin, TX, USA, January 26-28, 2011, Thomas Ball and Mooly Sagiv (Eds.). ACM, 55–66. https://doi.org/10.1145/
1926385.1926394

[3] Nick Benton, Martin Hofmann, and Vivek Nigam. 2014. Abstract effects and proof-relevant logical relations. In Proc.
POPL. ACM, 619–632.

[4] Nick Benton, Martin Hofmann, and Vivek Nigam. 2016. Effect-dependent transformations for concurrent programs.
In Proceedings of the 18th International Symposium on Principles and Practice of Declarative Programming, Edinburgh,
United Kingdom, September 5-7, 2016, James Cheney and Germán Vidal (Eds.). ACM, 188–201. https://doi.org/10.1145/
2967973.2968602

[5] Nick Benton, John Hughes, and Eugenio Moggi. 2000. Monads and Effects. In APPSEM. 42–122.
[6] Nick Benton, Andrew Kennedy, Lennart Beringer, and Martin Hofmann. 2007. Relational semantics for effect-based

program transformations with dynamic allocation. In Proc. PPDP. ACM, 87–96.
[7] Nick Benton, Andrew Kennedy, Lennart Beringer, and Martin Hofmann. 2009. Relational semantics for effect-based

program transformations: higher-order store. In Proc. PPDP. ACM, 301–312.
[8] Nick Benton and Benjamin Leperchey. 2005. Relational Reasoning in a Nominal Semantics for Storage. In TLCA.

Springer, 86–101.
[9] Stephen D. Brookes. 1996. Full Abstraction for a Shared-Variable Parallel Language. Inf. Comput. 127, 2 (1996), 145–

163. https://doi.org/10.1006/inco.1996.0056
[10] Simon Castellan. 2016. Weak memory models using event structures. In Vingt-septièmes Journées Francophones des

Langages Applicatifs (JFLA 2016), Julien Signoles (Ed.). Saint-Malo, France. https://hal.inria.fr/hal-01333582
[11] Simon Castellan, Pierre Clairambault, Silvain Rideau, and Glynn Winskel. 2017. Games and Strategies as Event

Structures. Log. Methods Comput. Sci. 13, 3 (2017). https://doi.org/10.23638/LMCS-13(3:35)2017
[12] Mike Dodds, Mark Batty, and Alexey Gotsman. 2018. Compositional Verification of Compiler Optimisations on Re-

laxed Memory. In Programming Languages and Systems - 27th European Symposium on Programming, ESOP 2018,
Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece,
April 14-20, 2018, Proceedings (Lecture Notes in Computer Science, Vol. 10801), Amal Ahmed (Ed.). Springer, 1027–1055.
https://doi.org/10.1007/978-3-319-89884-1_36

[13] YotamDvir, Ohad Kammar, and Ori Lahav. 2022. An AlgebraicTheory for Shared-State Concurrency. In Programming
Languages and Systems - 20th Asian Symposium, APLAS 2022, Auckland, New Zealand, December 5, 2022, Proceedings
(Lecture Notes in Computer Science, Vol. 13658), Ilya Sergey (Ed.). Springer, 3–24. https://doi.org/10.1007/978-3-031-
21037-2_1

[14] Tony Hoare and Stephan van Staden. 2014. The laws of programming unify process calculi. Sci. Comput. Program. 85
(2014), 102–114. https://doi.org/10.1016/j.scico.2013.08.012

[15] Martin Hofmann. 2008. Correctness of effect-based program transformations. In Formal Logical Methods for System
Security and Correctness, Orna Grumberg, Tobias Nipkow, and Christian Pfaller (Eds.). IOS Press, 149–173.

[16] Radha Jagadeesan, Alan Jeffrey, and James Riely. 2020. Pomsets with preconditions: a simplemodel of relaxedmemory.
Proc. ACM Program. Lang. 4, OOPSLA (2020), 194:1–194:30. https://doi.org/10.1145/3428262

[17] Radha Jagadeesan, Gustavo Petri, and James Riely. 2012. Brookes Is Relaxed, Almost!. In Foundations of Software
Science and Computational Structures - 15th International Conference, FOSSACS 2012, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2012, Tallinn, Estonia, March 24 - April 1, 2012. Proceedings
(Lecture Notes in Computer Science, Vol. 7213), Lars Birkedal (Ed.). Springer, 180–194. https://doi.org/10.1007/978-3-
642-28729-9_12

[18] Alan Jeffrey, James Riely, Mark Batty, Simon Cooksey, Ilya Kaysin, and Anton Podkopaev. 2022. The leaky semicolon:
compositional semantic dependencies for relaxed-memory concurrency. Proc. ACM Program. Lang. 6, POPL (2022),
1–30. https://doi.org/10.1145/3498716

[19] Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek Dreyer. 2017. A promising semantics for
relaxed-memory concurrency. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages, POPL 2017, Paris, France, January 18-20, 2017, Giuseppe Castagna and Andrew D. Gordon (Eds.). ACM,
175–189. https://doi.org/10.1145/3009837.3009850

[20] Ryan Kavanagh and Stephen Brookes. 2018. A Denotational Semantics for SPARC TSO. In Proceedings of the Thirty-
Fourth Conference on the Mathematical Foundations of Programming Semantics, MFPS 2018, Dalhousie University, Hal-
ifax, Canada, June 6-9, 2018 (Electronic Notes in Theoretical Computer Science, Vol. 341), Sam Staton (Ed.). Elsevier,
223–239. https://doi.org/10.1016/j.entcs.2018.03.025

https://doi.org/10.1017/S0960129522000330
https://doi.org/10.1145/1926385.1926394
https://doi.org/10.1145/1926385.1926394
https://doi.org/10.1145/2967973.2968602
https://doi.org/10.1145/2967973.2968602
https://doi.org/10.1006/inco.1996.0056
https://hal.inria.fr/hal-01333582
https://doi.org/10.23638/LMCS-13(3:35)2017
https://doi.org/10.1007/978-3-319-89884-1_36
https://doi.org/10.1007/978-3-031-21037-2_1
https://doi.org/10.1007/978-3-031-21037-2_1
https://doi.org/10.1016/j.scico.2013.08.012
https://doi.org/10.1145/3428262
https://doi.org/10.1007/978-3-642-28729-9_12
https://doi.org/10.1007/978-3-642-28729-9_12
https://doi.org/10.1145/3498716
https://doi.org/10.1145/3009837.3009850
https://doi.org/10.1016/j.entcs.2018.03.025


197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

A Denotational Approach to Release/Acquire Concurrency 5

[21] Ori Lahav. 2019. Verification under Causally Consistent Shared Memory. ACM SIGLOG News 6, 2 (apr 2019), 43–56.
https://doi.org/10.1145/3326938.3326942

[22] Ori Lahav, Nick Giannarakis, and Viktor Vafeiadis. 2016. Taming release-acquire consistency. In Proceedings of the
43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg,
FL, USA, January 20 - 22, 2016, Rastislav Bodík and Rupak Majumdar (Eds.). ACM, 649–662. https://doi.org/10.1145/
2837614.2837643

[23] Kenji Maillard, Cătălin Hriţcu, Exequiel Rivas, and Antoine Van Muylder. 2019. The next 700 Relational Program
Logics. Proc. ACM Program. Lang. 4, POPL, Article 4 (dec 2019), 33 pages. https://doi.org/10.1145/3371072

[24] Eugenio Moggi. 1991. Notions of Computation and Monads. Inf. Comput. 93, 1 (1991), 55–92. https://doi.org/10.1016/
0890-5401(91)90052-4

[25] Scott Owens, Susmit Sarkar, and Peter Sewell. 2009. A Better x86 Memory Model: x86-TSO. In Theorem Proving in
Higher Order Logics, 22nd International Conference, TPHOLs 2009, Munich, Germany, August 17-20, 2009. Proceedings
(Lecture Notes in Computer Science, Vol. 5674), Stefan Berghofer, Tobias Nipkow, Christian Urban, andMakariusWenzel
(Eds.). Springer, 391–407. https://doi.org/10.1007/978-3-642-03359-9_27

[26] Marco Paviotti, Simon Cooksey, Anouk Paradis, Daniel Wright, Scott Owens, and Mark Batty. 2020. Modular Relaxed
Dependencies in Weak Memory Concurrency. In Programming Languages and Systems - 29th European Symposium
on Programming, ESOP 2020, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS
2020, Dublin, Ireland, April 25-30, 2020, Proceedings (Lecture Notes in Computer Science, Vol. 12075), Peter Müller (Ed.).
Springer, 599–625. https://doi.org/10.1007/978-3-030-44914-8_22

[27] Christopher Pulte, Shaked Flur, Will Deacon, Jon French, Susmit Sarkar, and Peter Sewell. 2018. Simplifying ARM
concurrency: multicopy-atomic axiomatic and operational models for ARMv8. Proc. ACM Program. Lang. 2, POPL
(2018), 19:1–19:29. https://doi.org/10.1145/3158107

[28] Viktor Vafeiadis, Thibaut Balabonski, Soham Chakraborty, Robin Morisset, and Francesco Zappa Nardelli. 2015.
Common Compiler Optimisations are Invalid in the C11 Memory Model and what we can do about it. In Pro-
ceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2015, Mumbai, India, January 15-17, 2015, Sriram K. Rajamani and David Walker (Eds.). ACM, 209–220. https:
//doi.org/10.1145/2676726.2676995

https://doi.org/10.1145/3326938.3326942
https://doi.org/10.1145/2837614.2837643
https://doi.org/10.1145/2837614.2837643
https://doi.org/10.1145/3371072
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1007/978-3-030-44914-8_22
https://doi.org/10.1145/3158107
https://doi.org/10.1145/2676726.2676995
https://doi.org/10.1145/2676726.2676995


246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

6 Yotam Dvir, Ohad Kammar, and Ori Lahav

APPENDIX
The table below summarizes the transformations that we have validated using our denotational
semantics. Some are given first using the general rmw construct, then specialized to loads (?) and
well-known RMWs (CAS, FAA, XCHG). When a non-trivial closure rule (Ab, Ti, Di) is used for the
denotational justification it appears above the symbol↠.

Generalized Sequencing
(letx =𝑀1 in𝑀2) ∥ (lety = 𝑁1 in𝑁2)↠
match𝑀1 ∥ 𝑁1 with ⟨x, y⟩. 𝑀2 ∥ 𝑁2

Sequencing 𝑀 ∥ 𝑁 ↠ ⟨𝑀,𝑁 ⟩
Irrelevant Read Introduction ⟨⟩↠ ℓ? ; ⟨⟩
Irrelevant Read Elimination ℓ? ; ⟨⟩↠ ⟨⟩
Write-Write Elimination
ℓ ∶=𝑤 ; ℓ ∶= 𝑣 Ab↠ ℓ ∶= 𝑣

Write-Read Deorder (ℓ ≠ ℓ′)
⟨ℓ ∶= 𝑣, ℓ′?⟩ Ti↠ ℓ ∶= 𝑣 ∥ ℓ′?

RMW Expansion (𝜑𝑣 ≤𝜓�⃗� )
rmw𝜑 (ℓ ; 𝑣)

Di↠ rmw𝜓 (ℓ ;𝑤)

ℓ?
Di↠ CAS (ℓ, 𝑣, 𝑣)

CAS (ℓ, 𝑣, 𝑣) Di↠ FAA (ℓ, 0)
Atomic Store

ℓ ∶= 𝑣 ↠ XCHG (ℓ, 𝑣) ; ⟨⟩

Symmetric-Monoidal Laws, e.g.
𝑀 ∥ 𝑁 ↠ match𝑁 ∥ 𝑀 with ⟨x, y⟩. ⟨y, x⟩

Write-RMW Elimination
ℓ ∶= 𝑣 ; rmw𝜑 (ℓ ;𝑤)

Ab↠ ℓ ∶= 𝜑 id�⃗�𝑣 ; 𝑣
ℓ ∶= 𝑣 ; ℓ? ↠ ℓ ∶= 𝑣 ; 𝑣

ℓ ∶= 𝑣 ; CAS (ℓ, 𝑣,𝑢) Ab↠ ℓ ∶=𝑢 ; 𝑣
ℓ ∶= 𝑣 ; CAS (ℓ,𝑤,𝑢) ↠ ℓ ∶= 𝑣 ; 𝑣 (𝑣 ≠𝑤 )
ℓ ∶= 𝑣 ; FAA (ℓ,𝑤) Ab↠ ℓ ∶= 𝑣 +𝑤 ; 𝑣

ℓ ∶= 𝑣 ; XCHG (ℓ,𝑤) Ab↠ ℓ ∶=𝑤 ; 𝑣

RMW-Write Elimination (dom𝜓�⃗� ⊇ dom𝜑𝑢 )
letx = rmw𝜑 (ℓ ;𝑢) in

match (𝜓�⃗�)xwith
{𝜄� _.x ∣ 𝜄⊺ 𝑣 .ℓ ∶= 𝑣 ; x}

Ab↠ rmw𝜓 (ℓ ;𝑤)
letx = ℓ? in (if x = 𝑣

then ℓ ∶=𝑤 else ⟨⟩ ) ; x ↠ CAS (ℓ, 𝑣,𝑤)
letx = ℓ? in ℓ ∶= x + 𝑣 ; x ↠ FAA (ℓ, 𝑣)

letx = ℓ? in ℓ ∶= 𝑣 ; x ↠ XCHG (ℓ, 𝑣)

RMW-RMW Elimination ⟨rmw𝜑 (ℓ ; 𝑣) , rmw𝜓 (ℓ ;𝑤)⟩
Ab↠ letx = rmw𝜁 (ℓ ;𝑢) in ⟨x, 𝜑 id𝑣 x⟩ (𝜁𝑢 =𝜓�⃗� ○id 𝜑𝑣 )

⟨ℓ?, ℓ?⟩↠ letx = ℓ? in ⟨x, x⟩ ⟨FAA (ℓ, 𝑣) , FAA (ℓ,𝑤)⟩↠ letx = FAA (ℓ, 𝑣 +𝑤) in ⟨x, x + 𝑣⟩
⟨ℓ?,CAS (ℓ, 𝑣,𝑤)⟩↠ letx = CAS (ℓ, 𝑣,𝑤) in ⟨x, x⟩ ⟨XCHG (ℓ,𝑤) , ℓ?⟩↠ letx = XCHG (ℓ,𝑤) in ⟨x,𝑤⟩


	References

