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Denotational semantics defines the meaning of programs compositionally, where the meaning of a
program fragment is a function of the meanings assigned to its immediate syntactic constituents.
This makes denotational semantics instrumental for understanding the meaning a piece of code
in a way that is independent of the context under which the code will run. This style of semantics
contrasts with standard operational semantics, which only executes closed/whole programs. A ba-
sic requirement of such a denotation function ⟦−⟧ is for it to be adequate w.r.t. a given operational
semantics: plugging program fragments 𝑀 and 𝑁 with equal denotations—i.e. ⟦𝑀⟧ = ⟦𝑁 ⟧—into
some program context Ξ [−] that closes over their variables, results in observationally indistin-
guishable closed programs in the given operational semantics. Moreover, assuming that denota-
tions have a defined order (≤), a “directed” version of adequacy ensures that ⟦𝑀⟧ ≤ ⟦𝑁 ⟧ implies
that all behaviors exhibited by Ξ [𝑀] under the operational semantics are also exhibited by Ξ [𝑁 ].
For shared-memory concurrent programming, the seminal work of Brookes [1996] defined a

denotational semantics, where the denotation ⟦𝑀⟧ is a set of totally ordered traces that consist of
sequences of pairs of memory snapshots ⟨𝜇0, 𝜚0⟩ ... ⟨𝜇𝑛, 𝜚𝑛⟩. Each sequence represents a behavior
that the program fragment 𝑀 may exhibit. In every pair ⟨𝜇, 𝜚⟩ in a trace, 𝜇 is the snapshot that
𝑀 relies on the environment to provide; and 𝜚 is the snapshot that𝑀 guarantees to provide in re-
turn. The gaps between pairs represent possible interference by the environment. Working under
the assumption of preemptive scheduling—imposing no restrictions on the interleaving of steps of
execution between parallel threads—denotations are closed under the following two trace-rewrit-
ing operations which maintain the representation of possible behavior. Stutter adds a transition
of the form ⟨𝜇, 𝜇⟩ anywhere in the trace; a program fragment can always guarantee no changes
between its actions. Mumble combines a couple of subsequent transitions of the form ⟨𝜇, 𝜚⟩ ⟨𝜚, 𝜃⟩
into a single transition ⟨𝜇, 𝜃⟩ anywhere in the trace; a program fragment can always rely on its
own guarantees in the absence of observable interference from the environment.

A memory model describes how memory access by concurrently running threads is handled
through a program’s routine. Brookes established the adequacy of the trace-based denotational se-
mantics w.r.t. the strongest operational semantics of shared-memory concurrent programs, known
as sequential consistency (SC), where every memory access happens instantaneously and immedi-
ately affects all concurrent threads. Jagadeesan et al. [2012] closely followed Brookes to define
denotational semantics for x86-TSO [25, 27]. Other weak memory models, in particular, mod-
els of programming languages, and non-multi-copy-atomic models, where writes can be observed
by different threads in different orders, have so far been out of reach of Brookes’s totally or-
dered traces, and were only captured by much more sophisticated models based on partial or-
ders [10, 12, 16, 18, 20, 26]. Progressing in this direction, we target the Release/Acquire (RA) mem-
ory model. This model, obtained by restricting the C/C++11 memory model [2] to release/acquire
atomics, is a well-studied fundamental memory model weaker than x86-TSO, which, roughly
speaking, ensures “causal consistency” together with “per-location-SC” and “RMW (read-modify-
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write) atomicity” [21, 22]. These guarantees make RA sufficiently strong for implementing com-
mon synchronization idioms.

Our first contribution is a Brookes-style denotational semantics for RA. As Brookes’s traces
are totally ordered, this result may seem counterintuitive. The standard semantics for RA is a
declarative (a.k.a. axiomatic) memory model, in the form of acyclicity consistency constraints over
partially ordered candidate execution graphs. Since these graphs are not totally ordered, one might
expect that Brookes’s traces are insufficient. Nevertheless, we observe that Kang et al.’s “view-
based” machine [2017], an interleaving operational semantics that is equivalent to RA’s declarative
formulation lends itself to Brookes-style semantics by developing a compatible notion of traces.
In RA’s operational semantics, the memory associates a timeline to each location. A thread

writes by sending an immutable message, placing it on the appropriate timeline. The message oc-
cupies a segment of the timeline that must not intersect already-occupied segments, which means
that timeline totally orders the messages. A thread can spontaneously receive a message from
memory if a certain to-be-described causal consistency condition is met. Execution starts with a
single initial message on each timeline, which threads consider as already received.

Each threadmaintains a view that points to its most recentmessage at each location: the one that
appears latest on the location’s timeline of all the messages that the thread has received. A thread
reads by loading the value from its most recent message. When a thread writes, it must place
the message somewhere after its most recent message on the timeline, though possibly before
messages it has not yet received. A message from an RMW’s write must be placed adjacently to
the read message.This blocks another RMW from doing the same, thus enforcing atomicity. A sent
message is considered to be received, and thus it become the thread’s most recent message.

Each message records the view of the thread that wrote it, except for initial messages who’s
view points to the initial messages. We think of messages as pointing to other messages according
to this view. A thread can receive any message so long as it has already received all the other
messages to which the message points. This mechanism maintains causal consistency: a thread
cannot receive a message without receiving the messages that contributed to its creation.
In Kang et al.’s language, as is common in the literature on memory models, parallel compo-

sition (∥) appears only at the top level. We extend this language by allowing (∥) to appear in
nested positions, making it a first-class program construct. This allows us to decompose the jus-
tification of Write-Read Reordering (WR-Reord) (l ∶= 𝑣) ; m?↠ letx = m? in (l ∶= 𝑣) ; x, a crucial
reordering of memory accesses validated by RA but not by SC, using several valid transformations
that are justified by independent arguments. The main ones are Write-Read Deorder (WR-Deord)
⟨(l ∶= 𝑣) , m?⟩ ↠ (l ∶= 𝑣) ∥ m? and sequencing 𝑀 ∥ 𝑁 ↠ ⟨𝑀,𝑁 ⟩. The latter is an example of a
law of parallel programming [14]. With first-class parallelism we can validate the rest too, such
as generalized sequencing (𝑀1 ;𝑀2) ∥ (𝑁1 ; 𝑁2)↠ (𝑀1 ∥ 𝑁1) ; (𝑀2 ∥ 𝑁2). These transformations
can occur anywhere in the program, so reasoning in this way requires allowing nested parallelism.

We support first-class parallelism by organizing thread views in an evolving “view-tree”, rather
than in a fixed flat mapping. When sub-threads are activated, they inherit the view of the parent
thread, replacing the corresponding leaf with a node with two child leaves carrying the same view;
and when the threads synchronize, the parent thread inherits their views, combining two sibling
leaves into a leaf that replaces their parent.

Below we illustrate an example trace, in the setting of two memory locations l and m. The mem-
ory snapshots are illustrated using two diagrams. Top: shows the messages per location as (possi-
bly adjacent) segments on the location’s timeline. Bottom: shows the graph structure induced by
the views within messages. The only local message—added within a transition—is 𝜈2: one that the
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program fragment guarantees to provide, rather than relies on receiving. Our traces also include
an initial view 𝛼 , and a final view 𝜔 , by which the program fragment respectively relies on, and
guarantees, availability of message. These views are illustrated by showing where they point.
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Weprove several results about our semantics. Soundness: for every interrupted execution there
is a corresponding single-transition trace in the denotation. Fundamental Lemma: for every
trace in the denotation there exists an interrupted execution of the program fragment exhibiting
a related behavior. Adequacy: denotational approximation implies contextual refinement. An im-
mediate practical application of adequacy is the ability to provide local formal justifications of pro-
gram transformations, such as performed by optimizing compilers. Formally justifying these trans-
formations without the local analysis that denotational semantics provides is non-trivial [12, 28].

An important aspect of denotational semantics is its abstraction. As an external measure, we
verify that our adequate semantics validates various transformations/optimizations: standard and
structural transformations; algebraic laws of parallel programming; and all known thread-local RA-
valid compiler transformations involving atomic RA memory accesses. This level of abstraction is
achieved thanks to our denotations being closed not only under analogs to Brookes’s stutter and
mumble, but also several RA-specific operations. This design allows us to relate programs which
would naively correspond to rather different sets of traces. For example, we have theAbsorb closure
rule, which combines two adjacent local messages added within the same transition. Below we
sketch how it modifies memory snapshots between the precedent and antecedent traces:

𝑣𝜈 𝑤𝜖 𝜖𝜈 AbsorbÐÐÐ→ 𝑤𝜖′ 𝜖′

Figuratively, the preceding message (𝜈) is “absorbed” by the successor (𝜖 which becomes 𝜖′).
Nothing must point to the preceding message, so as to not leave dangling names. We use this
rule when validating transformations which eliminate a write that is followed by another, such as
Write-Write Elimination (WW-Elim) l ∶= 𝑣 ; l ∶=𝑤 ↠ l ∶=𝑤 .

Our second contribution is to connect the core semantics of parallel programming languages
exhibiting weak behaviors to the more standard semantic account for sequential programming
languages. Brookes presented his semantics for a simple imperative WHILE language, but Benton
et al. [2016], Dvir et al. [2022] later extended it to higher-order languages using Moggi’s monad-
based approach [1991]. A denotational semantics given in this monadic style comes ready-made
with a rich semantic toolkit for program denotation [5], transformations [3, 6–8, 15], reasoning [1,
23], etc. We want to challenge, compare, and reuse this diverse toolkit in the concurrent setting. As
a yardstick to the applicability of the monadic toolkit, we develop our semantics for a higher-order
functional language with a general, first-class parallel composition operator. This is in contrast to
most of the weak memory models research which employs imperative languages and assumes a
single top-level parallel composition, but more in line with game models for concurrency [e.g. 11].
This puts weak memory models, which often require bespoke and highly specialized presentations,
on a similar footing to many other programming effects.
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APPENDIX
The table below summarizes the transformations that we have validated using our denotational
semantics. Some are given first using the general rmw construct, then specialized to loads (?) and
well-known RMWs (CAS, FAA, XCHG). When a non-trivial closure rule (Ab, Ti, Di) is used for the
denotational justification it appears above the symbol↠.

Generalized Sequencing
(letx =𝑀1 in𝑀2) ∥ (lety = 𝑁1 in𝑁2)↠
match𝑀1 ∥ 𝑁1 with ⟨x, y⟩. 𝑀2 ∥ 𝑁2

Sequencing 𝑀 ∥ 𝑁 ↠ ⟨𝑀,𝑁 ⟩
Irrelevant Read Introduction ⟨⟩↠ ℓ? ; ⟨⟩
Irrelevant Read Elimination ℓ? ; ⟨⟩↠ ⟨⟩
Write-Write Elimination
ℓ ∶=𝑤 ; ℓ ∶= 𝑣 Ab↠ ℓ ∶= 𝑣

Write-Read Deorder (ℓ ≠ ℓ′)
⟨ℓ ∶= 𝑣, ℓ′?⟩ Ti↠ ℓ ∶= 𝑣 ∥ ℓ′?

RMW Expansion (𝜑𝑣 ≤𝜓�⃗� )
rmw𝜑 (ℓ ; 𝑣)

Di↠ rmw𝜓 (ℓ ;𝑤)

ℓ?
Di↠ CAS (ℓ, 𝑣, 𝑣)

CAS (ℓ, 𝑣, 𝑣) Di↠ FAA (ℓ, 0)
Atomic Store

ℓ ∶= 𝑣 ↠ XCHG (ℓ, 𝑣) ; ⟨⟩

Symmetric-Monoidal Laws, e.g.
𝑀 ∥ 𝑁 ↠ match𝑁 ∥ 𝑀 with ⟨x, y⟩. ⟨y, x⟩

Write-RMW Elimination
ℓ ∶= 𝑣 ; rmw𝜑 (ℓ ;𝑤)

Ab↠ ℓ ∶= 𝜑 id�⃗�𝑣 ; 𝑣
ℓ ∶= 𝑣 ; ℓ? ↠ ℓ ∶= 𝑣 ; 𝑣

ℓ ∶= 𝑣 ; CAS (ℓ, 𝑣,𝑢) Ab↠ ℓ ∶=𝑢 ; 𝑣
ℓ ∶= 𝑣 ; CAS (ℓ,𝑤,𝑢) ↠ ℓ ∶= 𝑣 ; 𝑣 (𝑣 ≠𝑤 )
ℓ ∶= 𝑣 ; FAA (ℓ,𝑤) Ab↠ ℓ ∶= 𝑣 +𝑤 ; 𝑣

ℓ ∶= 𝑣 ; XCHG (ℓ,𝑤) Ab↠ ℓ ∶=𝑤 ; 𝑣

RMW-Write Elimination (dom𝜓�⃗� ⊇ dom𝜑𝑢 )
letx = rmw𝜑 (ℓ ;𝑢) in

match (𝜓�⃗�)xwith
{𝜄� _.x ∣ 𝜄⊺ 𝑣 .ℓ ∶= 𝑣 ; x}

Ab↠ rmw𝜓 (ℓ ;𝑤)
letx = ℓ? in (if x = 𝑣

then ℓ ∶=𝑤 else ⟨⟩ ) ; x ↠ CAS (ℓ, 𝑣,𝑤)
letx = ℓ? in ℓ ∶= x + 𝑣 ; x ↠ FAA (ℓ, 𝑣)

letx = ℓ? in ℓ ∶= 𝑣 ; x ↠ XCHG (ℓ, 𝑣)

RMW-RMW Elimination ⟨rmw𝜑 (ℓ ; 𝑣) , rmw𝜓 (ℓ ;𝑤)⟩
Ab↠ letx = rmw𝜁 (ℓ ;𝑢) in ⟨x, 𝜑 id𝑣 x⟩ (𝜁𝑢 =𝜓�⃗� ○id 𝜑𝑣 )

⟨ℓ?, ℓ?⟩↠ letx = ℓ? in ⟨x, x⟩ ⟨FAA (ℓ, 𝑣) , FAA (ℓ,𝑤)⟩↠ letx = FAA (ℓ, 𝑣 +𝑤) in ⟨x, x + 𝑣⟩
⟨ℓ?,CAS (ℓ, 𝑣,𝑤)⟩↠ letx = CAS (ℓ, 𝑣,𝑤) in ⟨x, x⟩ ⟨XCHG (ℓ,𝑤) , ℓ?⟩↠ letx = XCHG (ℓ,𝑤) in ⟨x,𝑤⟩
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